Exponential Language Models, Logistic Regression, and Semantic

Coherence

Can Cai, Ronald Rosenfeld, Larry Wasserman *
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213
ccai@stat.cmu.edu,roni@cs.cmu.edu,larry@stat.cmu.edu

June 20, 2000

Abstract

In this paper, we modify the traditional trigram model
by using utterance-level semantic coherence features in
an exponential model. The semantic coherence fea-
tures are collected by measuring the correlations among
content-word pairs occurring in sentences of two cor-
pora, the real corpus and a corpus generated by the
baseline trigram model. The measure we use for esti-
mating the semantic association of content word pairs
is Yule’s @) statistic. For our preliminary analysis, we
have further simplified the modeling task by extract-
ing a small set of statistics from each sentence-based @
statistics and applying them as features to the exponen-
tial model. We also simplified the process of obtaining
the MLE solutions of the exponential models by approx-
imating it with a logistic regression model. We account
for the uncertainty in the estimates of ) by construct-
ing confidence intervals. The new model results in a
slight reduction in test-set perplexity. We also discuss
and compare alternative measures of associaztion, such
as x statistics.

1 Introduction

Trigram models decompose the probability of a sentence
into a product of conditional probabilities by the chain
rule:

k
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One disadvantage of this approach is that global sen-
tential information is hard to express. In particular,

*We are very grateful to Stanley F. Chen and Xiaojin Zhu for
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linguistic features cannot be easily integrated into the
model.

Rosenfeld (1997) introduced a Maximum Entropy
model which directly models the probability of an en-
tire sentence. According to this model, the probability
of a given sentence s is

P(s) = 5 - Po(s) - eap(Afi(5) @

where Py(s) is a baseline probability of a sentence s,
Z is a normalizing constant, f;(s) are features, or ar-
bitrary computable properties of the sentence (such as
the length of the sentence, the number of verbs in the
sentence, etc.), and \; are the associated weights. The
maximum likelihood estimates of 5\, of \; satisfies

B, (fi(s)) = % > fils) 3)

where N stands for total number of sentences in the
corpus. The essential point here is to find powerful fea-
tures that significantly modify the baseline estimate, to
make it better conform to actual language. In previous
work, Zhu et al (1999) used the whole sentence maxi-
mum entropy model with linguistic features that cap-
tured variable-length syntactic sequences sentence, re-
sulting in a slight reduction in perplexity on the Switch-
board corpus.

In this paper, we explore a complemantary aspect of
language, namely whitin-sentence semantic coherence.
The traditional trigram model does not capture seman-
tic correlations among content words, particularly when
they are far apart. Once these deficiencies of the tri-
gram model are quantified, they can serve to define new
features.

In Section 2, we describe how we measured the seman-
tic association of content word pairs within a sentence
by using Yule’s @ statistic. Section 3 introduces a new



and more convenient procedure for fitting the exponen-
tial model with new features. Sections 4 presents pre-
liminary results from the new models. Section 5, which
is an extension of section 2, discusses the confidence in-
terval of @) statistics. Section 6 briefly discusses the
alternative use of x statistics, and lists future work. All
experiments were run on the Broadcast News corpus.

2 Semantic Associations

One way to design semantic coherence features is to look
for correlations in the target corpus which are not pre-
dicted by the baseline trigram. To this end, we gen-
erated a corpus of 'pseudo-sentences’ from a Modified
Kneser-Ney trigram model (Chen and Goodman 1998)
trained on 103 million words of Broadcast News data.
We then extracted content word pair counts from the
original training corpus, as well as from the corpus of
‘pseudo sentences’. Since the trigram model captures
local correlations well, we decided to focus on the re-
mote correlation between two content words. Therefore,
the content word pairs studied in our analysis are only
those where the two content words co-occurring in the
same sentence with at least five words in between them.
For pragmatic reasons we defined 'content words’ to be
the most common 50,000 words in the training data, but
excluding the most common 200 words.

2.1 Contingency Table

Next, we built a contingency table for each content word
pair. The measure of semantic association will be de-
fined based on the contingency table. For a content
word pair (Wordl Word2), the contingency table is

Word1
Yes | No
Word2 Yes [ | Cwa
No | Co | Cy

where C; is the count of sentences in the training corpus
which contain both words (with at least 5 words between
them); C12 is obtained by subtracting C;1 from the num-
ber of sentences with Word1 in it; Cs; is the obtained by
subtracting C7; from the number of the sentences with
Word2; Css is the total number of sentences minus the
other three counts. Since we only consider content word
pairs separated by at least 5 words (to exclude “trigram
effects”), Ci2 and Cy; overlap at the set of sentences
in which both Wordl and Word2 occur but with fewer
than 5 word apart. Because of this, the table as defined
above is not a contingency table in the usual sense.sense.

2.2 Yule’s measure of association

After building the contingency table for each of the con-
tent word pairs, a proper measure of association must be
chosen. We decided to use Yule’s measure of association,
which is also called Yule’s @) statistic,

_ C'116122 - C'126'21

©= C11Ca + C12C91

(4)

The higher the value of @), the stronger the correlation
between the two words.

There are several reasons for choosing Yule’s Q). First,
unlike many other measures which can only take posi-
tive values, the value of ) range from —1 to 1. This
is important because the negative values can tell us to
which extent the two content words tend not to occur
together. The second advantage of () is that it is well
defined even for contingency tables with the cell counts
equal to zero, which isn’t true for some otherwise rea-
sonable measures, like mutual information:

I= Z Cij logNL (5)

N C4iCyj’

The Mutual Information statistic is undefined if there
exists a cell with count equal to zero in the contingency
table. Third, for our data, the () statistics tend to as-
sume the full dynamic range [—1,1]. Some other mea-
sures, for example, the correlation coefficient statistics
p, which has the form

ﬁ — 011022 - C’126’21
V/Ci4Coy Ci1C s’

has a very narrow dynamic range in practice.

The following are some examples of ) values of some
content word pairs calculated based on the 103 million
word training corpus:

(6)

Tablel. @ values of some content word pairs

ENTERTAINMENT WITNESS | -0.89
ANGELES CONGRESS -0.70
ABORTION REPUBLICAN 0.74
ARTISTS SONY 0.89
MH 1

These Q’s are indeed consistent with our intuition about

the semantic correlation of these content word pairs’.

2.3 () statistic for sentences

For any given sentence, we can now calculate a list of
@ statistics for all the content word pairs in it, based

1One may be surprised to see Q(M, H) = 1. This is because in
our training data, the only sentences with either M or H as words
contain the sequence “M * A * S * H «.



on the contingency table with counts collected from the
training corpus. Since we are interested in the semantic
coherence of the sentence as a whole, we further cal-
culate a set of descriptive sentence-level statistics from
that list. The statistics we use are the mean, median,
maximum and minimum values in the list. The following
diagram illustrate our process for deriving sentence-level
statistics:

A sentence
WiWs, WiWs, - --
Q12, @13,

Qmean; Qmedian; Qmax; Qmin

W;W; represent content word pairs and @Q;; is their as-
sociated () value. Repeated word pairs are counted only
once. Figures 1 and 2 show, in order, the histograms
of the mean, medium, maximum and minimum of @
statistics for a 59929-sentence corpus? of Broadcasting
News data, and an equal number of sentences generated
from the baseline model.

Mean Median

EY

1.0
1.0

o.

co os

10 4 00 05 no 2 0 05 1
Mean Qof el ot Medan Qofrea e

0o os 1.0 1.5 zZ.oO

40 45 0 [ J I 45 0 05 l]
ean Qof ke Medan Qo e et

Figurel

Maximum Minimum

2This corpus is not among the training data used to train the
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For each of the statistics, the top graph is for the
Broadcast News sentences 3 and the bottom one is for
sentences generated from the baseline model. Com-
paring the top and bottom histograms of each statis-
tic, we note that there are obvious differences between
the distributions of the @ statistic of the real sentences
and pseudo sentences. Especially for the histograms of
Qmean and Qmeqian the centers of the distributions of
@ mean and Qmegian Of the pseudo sentences are to the left
of those of the original sentences. Thus pairwise corre-
lation are weaker in the pseudo corpus. This is of course
consistent with our intuition that the baseline trigram
model does not adequately capture within-sentence se-
mantic correlations.

3 Fitting the Whole Sentence
Entropy model

Because of the clear distributional differences of these
four statistics between the two corpora, we decide to
apply them as features to the whole sentence exponential
model of equation 2.

The critical procedure of fitting the model is to find
the maximum likelihood solution of A;. This is a non-
trivial problem in exponential models in general, and
is particularly problematic in whole sentence models.
Chen and Rosenfeld (1999) provides an approach to ob-
taining the MLE of A; by using the Generalized Iter-

3In the histogram, we excluded the sentences without any con-
tent word pairs, for which all the four Q statistics are zero.



ative Scaling algorithm with the support of statistical
sampling methods. While this procedure was shown to
be computational feasible for practical construction of
competitive language models, it is still too computa-
tionally intensive to be used for model selection. In this
section we describe how to fit the whole sentence model
by formulating a related logistic regression problem.

3.1 Logistic Regression Models

There are three major advantages to using logistic re-
gression for our problem. First, it is much easier to fit
than the exponential model; there are full-featured sta-
tistical software packages for regression. Second, logis-
tic regression provide us a more efficient and convenient
way to do model selection when there are hundreds or
thousands of features. The third advantage is that the
logistic reformulation enables us to do non-parametric
regression.

To formulate the whole sentence model fitting as a
logistic regression problem, we define a new variable Y

such that ;
1 i
r={ i

where s € P means the sentence came from the orig-
inal corpus, and s € Py means the sentence came from
the pseudo corpus.

We also define a new function h(s) = P(Y = 1|s). By
Bayes Theorem:

h(s) = P =1|s)
P(slY =1)P(Y =1) .
P(s[Y =1)P(Y =1) + P(s|]Y = 0)P(Y =0 )
By design, we choose P(Y = 1) = P(Y = 0) = . Thus,
P(s)
P(s)+ Py(s)

seP
se P

h(s) =

Hence,
h(s) _ P(s)
T—hG)  RG) )
Substituting P(s) with the right hand side of equation
(2), we get

M) _ 27 Rols)exp(E; Aifi(s)
1—h(s) Py(s)
= Zen(S i), ©)

By taking logarithm of both side of (3), we obtain

log (%) = —logZ—}-;)\ifi(s)

Bo + z Bifi(s)

where By = —log Z and (3; = A;.

If we let fi(s) = x; in formula (10), it gives us the ex-
act form of logistic regression (Generalized Linear Mod-
els, or GLM)

logit(s) = Bo + z Bizi. (10)

The probability of a sentence as estimated by this model
will be

P(s) = Po(eapl(bo+ Y fim) (1)

3.2 Generalized additive models

The features we apply to the model do not necessar-
ily have linear relationships with logit(s). Actually, in
most of the cases, they have non-linear relationships.
Therefore, instead of estimating the coefficient 3; which
corresponds to the A; values in the maximum entropy
model, we can estimate a smooth function of z; by fit-
ting a Generalized Additive Model (GAM)

logit(s) = s + Z s(x;), (12)

which is also called nonparametric logistic regression. In
this work, we use the smoothing spline as the smooth
function for each feature. In the nonparametric case,
the probability of the sentence is estimated as:

P(s) = Poexp(50 + Z 8(xi)) (13)

4 Preliminary results

To train our GLM and GAM models, we used the
two corpora mentioned above: a sample of 59,926 real
sentences from the Broadcasting News domain, and a
same-size corpus of pseudo-sentences, generated from
the baseline trigram model Py(). We fit the logistic re-
gression models using six features: the mean, median,
maximum and minimum of the ) values of the content
word pairs in a given sentence, plus the length (num-
ber of words) and number of content word pairs in each
sentence. The reason for the latter two features is the
slight but systematic difference we observed in the av-
erage sentence length (and consequently in the number
of content word pairs per sentence) between the original
corpus and the pseudo corpus.

After fitting the models using standard statistical soft-
ware packages, we observed that all six features were
statistically significant in terms of x2 tests. We then
set out to measure the effect of the features on perplex-
ity. Unlike conventional conditional language models, in
whole sentence models perplexity cannot be computed



analytically, because the normalizing constant Z cannot
be so computed. However, it can be estimated to any ar-
bitrary accuracy. Using the technique described in (Zhu
et al, 1999), we measured sentence-level and word-level
perplexity of both the GLM and the GAM models, using
a yet-unseen test set of 56697 sentences, and compared
it to the baseline. Results are sumamrized in table 2.

Table2. Perplexity of GLM, GAM and the baseline

model
model perplexity | % reduced
baseline 111.43
GLM model | 109.78 1.5%
GAM model | 107.55 3.5%

Although the reduction in perplexity at the word level
is slight, it has been achieved with only 6 new param-
eters. Since the parameters are applied at the sentence
level, their average effect at the word level is much
smaller (at a sentence level, they result in an improve-
ment of 21% and 43%, respectively, in the average sen-
tence log-likelohood).

5 Confidence
statistics

intervals of (@

Like all other point estimations, the estimator of )
statistics expressed in (4) does not take into account
sample variations. Take the cases when C'j; = 0 as an
example, if a content word pair never occurs in the train-
ing corpus, the estimate of its ) value is —1, regardless
of the marginal counts of the two words. It may not
be an accurate estimate, especially when the marginal
counts of the words are small; this content word pair
may well occur in new data.

The statistic () is an estimate of a population param-
eter 8. To account for the uncertainty in () we compute
a confidence interval. The greatest statistical variation
is in C'11 so we begin by computing a confidence interval
for p = E(Cy1)/n, treating Cj2,C2 and Chs as con-
stants. Specifically, note that

C11 ~ binormial(N, p), (14)

where N is the total number of sentences in the training
corpus and p is the probability of two words occurred
together in the same sentences and at least five words in
between them. Then an exact 1 — « confidence interval
for p is

1
<p
N_Cntl 1 S
L+ ==y N e 41) 20,02

C11+1 F71
N—-C11 2(011+1),2(N—C’11),a/2

- Cu+1l -1
1+ N-Cn1 F2(011+1),2(N—Cu),a/2

(15)

where F~lvy,vs, a is the upper o cutoff from an F dis-
tribution with v; and ve degrees of freedom (Clopper
and Pearson, 1934). The confidence interval of Cy; is
just [NPiow, NDupper], where Pioy and Pypper represents
the lower and upper bound of the 1 — « confidence inter-
val of p. Substituting the upper and lower bound of Cy;
into (4), we can get the 1 — « confidence interval for Q.
We use the four descriptive statistics of the upper and
lower bound of ) values as new features together with
the statistics of the point estimates of Q.

Also, by observing the confidence intervals of @ for
content word pairs from both the real and pseudo cor-
pora, we notice two things. First, the lengths of the con-
fidence intervals tend to be shorter for the content word
pairs in real corpus than those in the pseudo sentence
corpus. Figure3 shows the distributions of the utterance
mean of the lengths of the confidence interval for the @
values in a real and a pseudo corpus with 59929 sen-
tences each. The histogram on the top is for sentences
from the real corpus while the bottom one are for those
from the pseudo corpus. The vertical solid line indicates
the medians of the distributions. As can be seen from
the graph, the distribution of the utterance mean length
of the confidence interval of () from the real corpus is
more right-skewed than that from the pseudo corpus.

Second, in the real corpus, most of the short con-
fidence intervals of @), for example, the intervals with
length less than 0.2, are shifted towards 1. But for the
pseudo corpus, those short intervals are mostly centered
on 0; also, the number of those short intervals is much
smaller in the pseudo corpus than in the real corpus.
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Mean of the length of the confidence
interval for real sentences

00 02 04 06 08 10
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Mean of the length of the confidence
interval for pseudo sentences

Figure3

Utterance mean of the lengths of the confidence interval of @



Based on these findings, we add the following new
features to our GLM and GAM models: the number
of content word pairs whose () values has a confidence
interval shorter than 0.2, the four descriptive statistics
of the length of the confidence interval of @) in addition
to the same four statistics for the point estimate of @,
upper and lower bound of ). After adding these new
features, word-level perplexity improvement is slightly
increased, to 3% for the GLM model, and 5% for the
GAM model.

6 Further discussion

6.1 y statistics

Besides using the @ statistic as a measure of association,
we also considered another measure, x statistics, which
is defined as

Cij — Ei
s

(DuMouchel, 1999) Where Cj; is the actual counts of a
content word pair (word;, word;), and E;; is their expect
counts of occurrence under the independence assump-
tion. The advantage of Chi over () is that it is scaled
by the standard distribution of C;;, because one can ap-
proximate the distribution of C;; as a poisson(E;;) with
variance equal to E;;. Our preliminary study of x shows
that the GLM and GAM with the four descriptive statis-
tics of x together with sentence length and number of
content word pairs as features reduces the perplexity by
4-5% for both models. The improvement that this new
statistics brings merits further study.

Xij = (16)

6.2 Other issues

The results reported here are very preliminary. Our goal
is to built a small set of features that will capture global
semantic coeherence. Shannon-style experiments show
that if such a feature is even half as good as human
judgment, perplexity reduction will be substantial. The
main difficulty we are still facing is how to model directly
the distribution of the entire set of content words, as
opposed to modeling of individual word pairs, which is
what was attempted here.

Even within the pairwise-correrlation approach, we
are still looking for more and better features to add to
our model. Also, we would like to assess how efficient
logistic regression models are in approximating the
maximum likelihood solution to the whole sentence
exponential model. We can learn that by calculating
the relative efficiency of the estimators of logistic
regression to the MLE of A;. In addition, the solution
provided by the regression models can be used as a

starting point for calculating the MLE.
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